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We review statistical methodology for estimating mean
concentrations of potentially toxic pollutants in water, for
small samples that are not normally distributed and

often contain substantial numbers of nondetects, i.e.
samples that are only known to be below some set of
fixed thresholds. Maximum likelihood estimation (MLE) and
regression on order statistics (ROS) are two main
approaches that dominate the literature, with transformation
bias under non-normality that increases with the severity
of censoring being the main problem. We consider

exact maximum likelihood estimators in conjunction with
the Box-Cox transformation and propose the Quenouille-
Tukey Jackknife as a method for bias reduction and
variance estimation. Exact maximum likelihood estimators
resulting from the expectation-maximization (EM) algorithm
are exhibited in a simple heuristic form that also provides
estimated values for the nondetects as subsidiary outputs.
We show in simulations that the two main approaches perform
well for the log-normal and gamma distributions as long
as the jackknife is employed to reduce bias. Bias corrections
to MLE used in the literature are shown to correct in

the wrong direction under severe censoring. The jackknife
is also used for estimating the variance of the both the
MLE and ROS estimators. Robustness isimproved by searching
a class of power transformations (Box-Cox) for the best
approximating normal distribution. We conclude that both
the exact MLE and ROS procedures can be useful

under varying experimental conditions. Limited simulations
indicate that the ROS procedure is unbiased and has a
smaller variance than the MLE under the log-normal
distribution and is robust. The MLE performed better in
simulations involving the gamma as the underlying distribution.
We also compare the estimators for the mean and
variance that one obtains from typical sets of water
quality data, analyzing for copper, alumnium, arsenic,
chromium, nickel, and lead.

Introduction

The problem of estimating parameters of the normal
distribution under censoring or truncation has along history,
dating back at least to the papers of Hald (1) who derived the
maximum likelihood estimators (MLEs) and their large-
sample variance covariance matrix and Aitchison and Brown
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(2) who did the same for the log-normal distribution. The
equations in their primitive versions could not be solved in
closed form, and so application of iterative methods such as
Newton—Raphson (see ref 3), while theoretically feasible,
were computationally intensive and often unstable for
starting values chosen away from the maximum. This
realization spawned a number of papers that advocated either
the use of various computational tables such as in ref 4 or
approximations to the exact likelihood equations such as in
ref 5. Such approximations persist to the present (see, for
example, refs 6 and 7) and even appear in software packages
such as ref 8 when it is well-known that exact MLEs are
available by simple and numerically stable iterations using
the EM algorithm as in refs 9 and 10.

A common concern in the literature has been for bias
thatisinherentin many maximum likelihood estimators and
which is exacerbated by transformations designed to improve
the accuracy of the normal likelihood with censored data.
For non-normal distributions, it is common in water quality
work to assume that the log-normal distribution applies so
that the logarithms of the raw data can be used in a Gaussian
likelihood. The means and variances of the transformed
variables are related nonlinearly to the original means and
variances, and the process of transforming back gives
estimators that often are quite severely biased. Bias correc-
tions for the conventional untransformed MLEs have been
derived in ref 11 under Type Il censoring, where observations
are discontinued after a specified number of failures. The
usual assumption in water quality problems is that nondetects
are all below some threshold, a situation commonly referred
toas Type | censoring. Schneider and Weissfield (12) continue
this bias study using a least-squares fit to Saw’s table to obtain
acorrection depending strictly on the percentage of censored
observations, i.e., the correction depends on both the number
of observations and the number of nondetects. Transforma-
tion bias introduced by the log-normal assumption was
discussed by El-Shaarawi (13), who computed the expectation
of the estimated untransformed means using the large-
sample distributional properties of the maximum likelihood
estimators in the transfomed space. The large sample
properties substituted were for the MLEs assuming that there
has been no censoring. Besides this use of an inappropriate
asymptotic variance covariance matrix, there is the problem
that the bias correction depends on the MLEs so that the
distribution of the corrected estimator has a further non-
linearity. Simulation studies of the Saw bias correction in
refs 14 and 6 showed that it failed to correct properly for
samples with greater than 40% censoring. In this paper, we
will see that the Saw bias correction actually adjusts a small
bias in the wrong direction. We obtain some limited success,
however, using the Quenouille-Tukey Jackknife (see ref 15)
as a method of correcting for bias and for estimating the
variances of the estimated means.

Most methodology recognizes that it is unlikely that the
underlying water quality data will be either normal or log-
normally distributed and entertains various procedures for
protecting against distributional departures. Two compre-
hensive simulation papers by Gilliom and Helsel (16) and
Helsel and Gilliom (17) used regression on the normal scores
of order statistics of the log transformed data. This was
originally proposed by Gupta (18) for the untransformed case,
who used regression weighted by the inverse of the covariance
of the order statistics. Gilliom and Helsel evaluate eight
different methods including maximum likelihood and con-
clude that the method of regression on order statistics (ROS)
isbestin terms of mean square error. They also assert superior
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coverage properties for confidence intervals computed by
ROS over MLE intervals, but their study is flawed by using
variance estimates computed from the simulations and not
from theoretical properties of ROS or MLE. There should be
an estimator for the variance of the ROS or MLE estimator
that can be computed directly from the sample. We resolve
this difficulty in the current paper by using the large-sample
Cramér-Rao lower bound for the MLE and jackknife estima-
tors for both the MLE and ROS methods.

The issue of robustness to underlying distribution can
also be approached by estimating a transformation that leads
to the best approximate Gaussian likelihood, as in ref 10.
Maximum likelihood estimators in the transformed space
can be transformed back to obtain maximum likelihood
estimators for the mean and variance in the original
untransformed scale. A class of power transformations (see
ref 19) of the form

_lot =1y, a=o0
WD =1 o &)
for asample x;, i =1, 2, ..., n has potential, where the mean

and variance of X, say ux,0x?, expressed in terms of the
moments of y;, say uy,0,?, are fairly easy to compute for the
special cases 1 =0, .50, 1, corresponding to the logarithmic,
square root, and no transformation, respectively, using eq
10. For limited censoring, ref 10 shows that searching the
transformed likelihood produces an effective transformation
in many cases and evaluates the effects on the coverage of
the confidence intervals obtained through such a procedure.
In particular, it is important not to apply a transformation
such as the logarithmic form when one is not needed.

A number of the simulation studies (for example, refs 16,
17, and 6) have investigated the effect of filling in various
values for the unobserved elements of the sample that fell
below the detection limits. Suggestions considered are
replacing the values by zero, the detection limit, or one-half
the detection limit. Such arbitrary procedures seem less
defensible than the use of values following from theoretically
defensible arguments. For normal variables, the EM algorithm
for exact MLE (see ref 10) uses the conditional mean, E(yilyi
= Tj), and conditional variance of the normal distribution at
each stage of the iterative procedure (see also ref 21) as fill-in
contributions for the components of the sample mean and
variance. Another sensible fill-in procedure, used for the ROS
estimators, is to fit a straight line to the normal scores of the
order statistics for the observed values and then to fill in
values extrapolated from the straight line for the observations
below the detection limit. We concentrate on these latter
two methods in this investigation.

In the second section, we summarize the two recom-
mended methodologies, namely, exact maximum likelihood
estimation (MLE) and regression on order statistics (ROS),
with additional contributions to the bias reduction and
variance estimation problem using the Quenouille-Tukey
Jackknife. The jackknife estimator has also been suggested
previously by Singh et al. (20). We also illustrate the two
recommended procedures on a set of contrived data,
generated from the log-normal distributions. The third
section shows simulations involving the various methods
for samples of sizes n = 20, 50 with high levels of censoring
(50%, 80%). In section 4, we illustrate results on a group of
real metal concentrations in water samples.

Statistical Methodology

Suppose that we observe a sample that could conceptually
contain values Xi, Xz, ..., Xn, With common mean u, and
variance 2. In the Type | censored case, a subset of ny <
n values are only known to be below some threshold, i.e., x;
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< Ti. The remaining n; values (ng + n; = n) are observed as
Xi, Xi > Ti. We assume further that the population x values
may be distinctly non-normal, as, for example, in the case
of water quality data, which may be log-normally distributed
or may have a gamma distribution. We assume that there is
a transformation of the form (1) which produces an ap-
proximately normally distributed set of values y; with
transformed thresholds, U; generated by applying (1) to the
thresholds implied for the raw data. The methods given below
for the MLE and ROS assume the above conditions.
Regression on Order Statistics (ROS). A number of
potentially robust methods are available using the normal
scores for the order statistics. We take the one here recom-
mended in ref 8. Suppose that a transformation (logarithmic
or otherwise) has yielded no observations, yi, i =1, 2, ..., no,
each below a common transformed detection limit U and n;
observationsyi, i =ng + 1, ..., Nng + n; that are observed and
greater than U. If the observations are independently
normally distributed and have common mean u, and var-
iance ¢y?, the mean and variance will satisfy the equation

Yi= Auy + ayq)_l(Pi)

where P; = Prob{Y; < yi} and ®~%(:) denotes the inverse of
the cumulative normal distribution function 13, defined in
the Appendix. This suggests that the intercept and slope from
aregression on the normal scores would yield the mean and
variance of the transformed observations. The regression is
performed on the inverse transformed adjusted order
statistics. It should be noted here that if the procedure is
truly robust to departures from normality, the original
untransformed observations x; and detection limits T; could
be used. Our simulations, presented later in the third section,
suggest that regressing on the order statistics is robust for
log-normal populations but is distinctly nonrobust if the
underlying data follow a gamma distribution.

The commonly accepted procedure is to replace the
probabilities by the adjusted ranks (22), so that the regression
equation becomes

_ 1 —
Yi =uy + Gy(I) ! (ri//i) + € (2)

where i =no+ 1, no + 2, ..., no + N1, with the estimators for
uy and oy estimated by least squares. This implies that the
residual errors ¢ are assumed to have equal variance and are
uncorrelated. Gupta (18) gives the covariance matrix of the
order statistics for relatively small samples and then uses
weighted least squares. In the present case, Helsel and Gilliom
(17) recommend using ordinary least squares as an easier
computational alternative. Their procedure uses the pre-
dicted values from the regression model (2) fori =1, 2, ...,
no for the censored values. Then, transform back to the
original observations X and compute the usual mean and
variance from the resulting sample Xy, Xz ..., Xno, Xno + 1, -+ Xno
+n1 for fixand 6,2, Note that the procedure produces estimators
for the censored values based on extrapolation from anormal
model for the transformed values and then back-transforming
to the original raw observations.

The literature is not clear on what is used for the variance
of iiyand how this can be incorporated into a 95% confidence
interval. One possibility is to use the sample variance of the
extrapolated sample and make the assumptions that are used
in the uncensored case with an adjustment for the degrees
of freedom. We have not followed that procedure here but
have utilized the jackknife estimator described in the next
section.

Bias, Variance, and the Jackknife. We may apply the
jackknife for estimating the variance of the parameter
estimators produced by the ROS procedure since no theo-
retical arguments have been given in the literature for



preferring another method. Suppose that we have an
estimator, generically denoted by 0, for some parameter 6.
The jackknife estimator computes a collection of n pseu-
doestimators, by deleting one observation at a time and
redoing the estimation. That is, let 6;_j denote the estimator
with observation i deleted, fori =1, 2, ..., n. Let

n
O=n"Y 6 ©)

be the sample mean of these estimators. The Quenouille-
Tukey Jackknife estimator (see, for example, ref 15) is

0=nb—(n—-1)0_, 4)

and can be shown to eliminate a bias term of order 1/n. An
estimator for the variance of the jackknife estimator is

n—12 _ o,
(9[—i] - 9[— «]) (%)

3(0) =

n &

Based on the assumed normal distribution for the
estimator, a 95 confidence interval might be taken as

0 + t6(0) (6)

where the multiplier 1.96 might be used if the assumption
of normality holds, or we might use the value implied by the
t-distribution, with degrees of freedom chosen on the basis
of simulation. For example, twice the ratio of the squared
mean of 62(0) to its sample variance is sometimes used to
estimate the equivalent degrees of freedom for the estimator.
We found that this procedure tended to underestimate the
degrees of freedom in simulations, leading to higher than
nominal coverages for the confidence intervals.

The possibility that the observed data are contaminated
by outliers or that the observations may have come from a
mixture of distributions should be recognized. Every attempt
should be made to isolate a specific cause for apparent
outliers since the heavy-tailed distributions that dominate
the water quality measurements tend to produce large values
that may only look like outliers. If no irregularities due to
sampling or analysis are obvious, we might evaluate the
influence of the potential outlier by comparing the estimated
parameter 6 to its value with the potential outlier deleted,
say 6;-i. This could be done by comparing the difference |0
— O;-j| to the expected standard deviation of the estimated
difference, say &(6). If the difference is greater than four or
five standard deviations, the observation might be deleted.

Maximum Likelihood Estimation and the Box-Cox
Transformation. Maximum likelihood estimation is also
based on the assumption that the transformed variables are
normally distributed, noting that the transformation (1) with
the yi(1), i =1, 2, ..., n assumed to be normally distributed
will produce the log likelihood function

2 nl 1 2
INL@A, uy, 0, )0 ————— Y (i —u)’ +
2 20y yi= Ui

G-Dinx,+ § IndZ) (7)
y;i y.;.

for the untransformed xi(1), where the sums run over the
uncensored, y; > Uj, and censored, y; < U, observations,
respectively, with the U; defined as the transformed detection
limits. Note that the argument of the normal cumulative
distribution function is the transformed and standardized
variable given by eq 16 of the Appendix. Box and Cox (19)
proposed evaluating the log likelihood for each power 1 and

choosing the transformation for which the log likelihood is
maximized. This requires estimating «, and ¢,? for each 1,
which can be done recursively using the Expectation
Maximization (EM) algorithm, as in ref 10.

To apply the EM algorithm, let the current estimators be
denoted by uy, 0’3. Intuition suggests that the next estimators
for the mean should depend on the sample mean of the
observed data and the average of the expectations of the
censored data, taken conditionally on being less than the
detection threshold U; for the ith censored observation. It
turns out that the EM algorithm defines an iterative sequence
involving re-estimating the mean and variance at each step.
The mean is updated by averaging the observed observations
with the conditional means of the censored observations
evaluated at the previously estimated parameter values, i.e.

fy = n_l(y;i E(vilyi = Uy + y;i i) =
n—l(y;i (W — o) + y;i y:) (8)

Note that the corrected mean in eq 8 is just the original
mean corrected by a scaled version of the ratio of the normal
density to the cdf, as given in egs 14—16 of the Appendix.

For the updated variance, it turns out that we simply
average the usual squared residuals from the previously
estimated mean and the conditional form of the previously
estimated variance, i.e.

5, =n"( Z var (yly, = Up) + }U i = ,)°) =
yi=Ui yizUi
n(Y 2A-ZR)+ S i —A)) (9)
Y;i ’ YiZJi g

where R; and Z; are defined as egs 15 and 16 evaluated at u,
and o,. Note that each component of the first sum is the
conditional variance as defined by eq 17. This simple updating
procedure is repeated, with the new estimators jiy, and oy
taking on the role of u," and g/, with the log likelihood eq
7 monitored for convergence. The EM algorithm is guaranteed
to increase the log likelihood eq 7 at each step, and the log
likelihood converges to a unigue maximum when one exists.
Furthermore, the algorithm is robust to starting values, which
can be chosen as the sample mean and variance of the
observed values or set at arbitrary values. The variances and
covariances of i, and 6,2 are given in ref 10 as the elements
of the inverse of the negative of the information matrix, 1.
The information matrix has components that are relatively
simple functions of the quantities Z;, Ri and the true mean
and variance. However, our simulations show that the
jackknife procedure described in the previous section
produces variances that lead to better coverages for the
confidence intervals.

Of course, the estimated means, uy, and the estimated
variances of the means in the untransformed scale are of
primary interest. Shumway et al. (10) found that a limited set
of Box-Cox values 4 = 0, .50, 1.00 were effective for
environmental data. Recall that 0 generates the log-normal
distribution, and 1 assumes the normal distribution with the
intermediate value .5 corresponding to the square root.
Shumway et al. (10) have also investigated the success rate
for Box-Cox in choosing the correct transformation. They
found that the method works well when choosing no
transformation (70% correct) and in choosing the log-normal
transformation (48—68%) but has more difficulty in choosing
the square root (50%) on data with known transformations.
Hence, simply finding the transformation that maximizes
the log likelihood for each particular data set and then
applying that transformation is not necessarily recom-
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mended. Rather, it might be more appropriate to determine
the transformation by a vote over a particular class of data
sets and then apply the most popular transformation across
all data in the class.

In the case of the logarithmic and square root transfor-
mations, the means for the untransformed data will be given
by

exp{uy—i-%oyz}, A=0
-|n 2.1 5, ,_ 10
|Gy +1) + 300 A=50 (10)
uy+ 1, =100

The above expressions will give the exact maximum
likelihood estimators for the mean jix in the original scale if
they are evaluated at ji,, Gy, but they are still nonlinear
functions of the parameters in the transformed scale.
Shumway et al. (10) expand the nonlinear functions of the
above in afirst-order Taylor series and obtain the approximate
variance via the delta method. The above reference also
considered Efron’s bootstrap, Efron (23) and the bias
corrected bootstrap of Efron (24), and found that the delta
method performed better in simulations.

Beginning with ref 11, considerable effort has been
expended in finding an appropriate bias correction for the
censored case and for 1 =0, i.e., the log-normal assumption
Schneider and Weissfield fitted the Saw correction by least
squares (see also ref 14) and obtained a bias correction of
the form

~r

Ox

n+

ng
n+1

=+ exp{ 2.692 — 5.439 } (11)

We note in succeeding simulations that some situations
lead to positively biased estimators for the mean for censoring
levels in excess of 50%, so that the positive correction above
would actually increase the bias. It is also the case that the
Saw correction was proposed for the Type Il censoring
situation rather than for the Type | situation considered in
this paper.

An Example of MLE and ROS Methods. A sample of n =
25 log-normally distributed observations was generated,
yielding no = 7 censored observations. The true mean and
variance in the original scale were ux = 2.77 and o> = .56,
respectively. In general, the proposed procedure is to first
study the properties of the various power transformations to
find the best candidate for the class of data that are under
consideration. This involves evaluating the log likelihood eq
7 over a range of powers, defined by the basic power
transformationeq 1. Foreach 4,0 < 4 < 1, the EM algorithms
8 and 9 are applied repetitively to estimate u, and ¢,?. A plot
of the log likelihood is shown in Figure 1, and we note that
the maximum occurs for 4 = 0, implying the log-normal
distribution.

To continue, we apply the EM algorithm to the data with
A = 0 and starting values, ﬁ’y =1.11, 6'y = 1.344, determined
as the mean and variance of the uncensored sample data.
Note that this simply involves computing successively
adjusted means and variances using eqs 8 and 9. After 20
iterations of the EM algorithm, we obtain the final exact MLE
ity =1.0321 and the inverse transformed MLE /i, = 2.85 from
eq 10. Figure 2 shows a plot of the log likelihood surface,
with the maximum indicated, and we note that the surface
is well behaved with a unique maximum.

Note that the mean is over-estimated (2.85 vs 2.77) and
that a 95% confidence interval, using the delta method of
Shumway et al. (10), gives (2.61, 3.02) and covers the true
value of 2.77. We evaluate the effectiveness of such confi-
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FIGURE 1. Log likelihood as a function of the Box-Cox power
parameter A.

dence intervals in subsequent simulations and compare to
the jackknife method that is favored in this paper.

Following through the first method of the section involves
a regression on the order statistics (ROS) corresponding to
the normal scores of the logarithms, followed by an ex-
trapolation and then a computation of the conventional
estimators of the adjusted sample, yielding (iix = 2.82, 6x =
.53). The bias of these estimators is less than for the MLEs
although the 95% confidence interval (2.65, 3.04) is very
comparable.

Simulations

It is natural to ask what the limits might be on sample size
and censoring level for data that are similar to that considered
in the example of the previous section. Configurations of
interest in this particular study were sample sizes on the
order of n =20, 50, with censoring of 50, 80% of the observed
values. It is of interest to examine the bias, variance, and
confidence coverage properties of the MLE and ROS pro-
cedures for these four experimental configurations. Also, the
empirical distributions of the estimated means and the
coverage properties of confidence intervals, computed from
these estimators are of interest. Because the log-normal
distribution is likely to be of greatest interest, we ran several
simulations with 4 = 0.

Table 1 shows the results of 500 repetitions of the process
of simulating samples in the four basic experimental
configurations. In this case, we considered maximum likeli-
hood with the Box-Cox transformation (BC-MLE) and
regression on order statistics both with (BC-ROS) and without
(ROS) the transformation. Note that running the ROS method
without a transformation is a rough method for evaluating
its robustness to the log-normal departure. For the small
samples, several observations can be made. First, the bias of
the MLE is small and positive, about 5% of the mean, whereas
the bias of the ROS is essentially zero. Note that the jackknife
estimator for the MLE reduces the bias to essentially zero in
all cases. The standard deviations of both ROS estimators
are slightly smaller than the MLE, implying that the confi-
dence intervals will be tighter at a given significance level.
The coverage properties of all three estimators match the
nominal coverage of 95%. For the larger sample, the three
methods give comparable results; the bias of the maximum
likelihood estimator is about 2%. Note that the excellent
performance of the ROS estimator without any transforma-
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FIGURE 2. Log likelihood surface for contrived data.

TABLE 1. Average of Estimated Means, Standard Deviations
&SD), and Jackknife Means, Mean-J (SD) for Log Normal
opulation with gy = 2.77, ox = 0.56°

n 95%
(% censoring) method mean (SD) mean-J (SD) coverage
20(50) BC-MLE  2.92(0.15) 2.76(0.14) 95

BC-ROS  2.77(0.12) 2.77(0.12) 94
ROS 2.77(0.12) 2.77(0.12) 93
20(80) BC-MLE  2.93(0.15) 2.75(0.14) 96
BC-ROS  2.77(0.12) 2.77(0.12) 95
ROS 2.77(0.12) 2.77(0.12) 93
50(50) BC-MLE  2.83(0.08) 2.78(0.08) 97
BC—ROS 2.83(0.08) 2.78(0.08) 94
ROS 2.77(0.08) 2.77(0.08) 94
50(80) BC-MLE  2.81(0.08) 2.77(0.08) 96
BC—ROS 2.77(0.08) 2.77(0.08) 94
ROS 2.77(0.08) 2.77(0.08) 94

2 Methods are exact maximum likelihood (MLE) and robust regres-
sion on normal scores (ROS) with Box-Cox (BC-MLE, BC-ROS) and
without Box-Cox (ROS) for samples of size n = 20, 50, and 50%, 80%
censoring, 500 replications.

tion modification at all in all cases implies robustness to the
log-normal departure in both sample sizes. The biases
predicted by the Saw correction (eq 13) were small and
negative (0—5%) and would have adjusted in the wrong
direction.

To test the consistency of the above results, other
simulations were run which yielded similar values except for
the magnitude of the biases of the unadjusted MLE. For
example, increasing the theoretical mean and standard
deviation to u, = 2.276, o, = 1.213 again produced maximum
likelihood estimators that were biased about 15% high in
small samples with the jackknifed, MLE again having
essentially zero bias. There were also biases in the large
sample (7%) by the MLE, which went to zero with the jackknife
correction. The ROS method was basically unbiased in all
cases and had substantially smaller standard deviations, .26
compared to .34 in the smaller samples, and .17 compared
to .18 in the larger samples. Again, the nominal coverages
were attained for all estimators.

Empirical distributions of the MLE and ROS estimators,
both with and without the jackknife, are shown in Figures

1.04 1.06

3 and 4 for the small sample size and 50% censoring. We
note the generally symmetric nature of the empirical
distributions in both cases that are approximately normal
and are clustered around the theoretical value ux = 2.77. The
sampling distributions of the standard deviations are shown
in Figures 3 and 4 for the maximum likelihood and normal
scores estimator, with samples of size 20 and 50 censoring.
It is clear that the delta method (left panel) and jackknife
estimators (right panel) for the distributions of the MLEs are
comparable, and we can use the asymptotic delta results.
Similarly, the naive estimator for the sample variance s?/n
in the left panel of Figure 4 is not that much different from
the jackknife estimator in the right panel, verifying that what
we think might be used in the literature is reasonable. The
average standard deviation estimators, shown in Table 1 for
the log-normal case, are also comparable, whether we use
the asymptotic or jackknife estimator for the MLE or the
standard s2/n or the jackknife estimator for the ROS estimator.
We obtained comparable results for a small sample (n = 20)
with high censoring (80%). The distribution of the MLE
estimators look approximately normal, whereas the ROS
estimators are somewhat skewed, with relatively long left
tails. Comparable results showing the sampling distributions
for the larger samples (n = 50) and the 80% censoring levels
were similar.

In general, using a multiplier of t = 2 in eq 6 seemed to
produce the best agreement between nominal and actual
coverage for the 95 confidence intervals. As mentioned earlier,
we experimented with estimating the equivalent degrees of
freedom of the jackknife variance and found, in simulations,
that the resulting estimators were too low and produced
intervals that were too conservative.

The above results are relevant for the case where it is
known that there exists a Box-Cox transformation, namely,
the logarithmic transformation, that produces exactly normal
data in the transformed domain. Itis natural to wonder what
would happen if there were no exact transformation to
normality within the Box-Cox range. With this in mind, data
were generated from a gamma distribution with mean value
4.00 and standard deviation 2.83. Searching the log likelihood
eq 7 for the appropriate Box-Cox transformation when the
data were generated from a gamma distribution tends to
produce a maximum close to 4 = 5 for the four cases, and
this value was settled on as an approximation to a trans-
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FIGURE 3. Empirical distributions of maximum likelihood and jackknife MLE estimators for means (upper panels) and standard deviations
(lower panels) in samples of size 20 with 50% censoring, 500 repetitions.

ROS, n=20, P=.50
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ROS-Jack, n=20, P=.50
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FIGURE 4. Empirical distributions of ROS and jackknife ROS estimators for for means (upper panels) and standard deviations (lower panels)

in samples of size 20 with 50% censoring, 500 repetitions.

formation to normality. Table 2 presents comparable simu-
lation results under this scenario.

Table 2 shows results that vary quite a bit from those
obtained in Table 1. In this case, MLE and ROS with the
Box-Cox transformation are comparable, with slight negative
biases and confidence interval coverages that are somewhat
less than the nominal 95%. In particular, the jackknife still
seems to improve the performance of the maximum likeli-
hood estimator but actually produces more bias in the ROS
estimator. The ROS without the Box-Cox transformation is
heavily biased, generally from 30 to 50%, over all configura-
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tions and produces an estimator with a large variance. Hence,
the untransformed ROS estimator is distinctly nonrobust
against the gamma distributed data and cannot be recom-
mended for use in this case. In general, the MLE seems to
be superior in this case because of smaller bias and better
coverage.

Water Quality Data Analysis

Analyzing data that are likely from typical measurements is
important, and we briefly consider some typical concentra-
tion data for the metals copper, aluminum, arsenic, chro-



TABLE 2. Average of Estimated Means, Standard Deviations
SD), and Jackknife Means, Mean-J (SD) for Gamma
istributed Populations with gy = 4.00, oy = 2.832

n 95%
(% censoring) method mean (SD) mean-J (SD) coverage
20(50) BC-MLE  3.95(0.67) 3.94(0.66) 92

BC-ROS  3.96(0.63) 3.81(0.75) 91
ROS 2.90(0.86) 2.75(1.41) 91
20(80) BC-MLE  4.48(0.92) 4.31(0.94) 89
BC—ROS 4.57(0.62) 3.43(1.86) 85
ROS 2.40(1.02) 2.03(4.38) 96
50(50) BC-MLE  3.91(0.43) 3.90(0.43) 93
BC-ROS  3.90(0.40) 3.87(0.45) 94
ROS 2.80(0.58) 2.72(0.86) 72
50(80) BC-MLE  4.07(0.63) 3.93(0.59) 95
BC-ROS  3.98(0.40) 3.63(0.98) 89
ROS 2.93(0.57) 2.86(0.82) 85

2 Methods are exact maximum likelihood (MLE) and robust regres-
sion on normal scores (ROS) with (BC-MLE, BC-ROS) and without Box-
Cox for samples of size n = 20, 50 and 50%, 80% censoring, 500
replications.

TABLE 3. Analysis of Metal Concentrations

n

method I (% censored) mean SD 95% conf int
copper 0.10

MLE 346(2) 15.98 14.53 14.48-17.47
ROS 346(2) 15.85 14.28 14.35-17.35
aluminum 0.00

MLE 41(17)  118.26 218.28 59.17—177.36
ROS 41(17)  152.87 398.16 31.72—274.02
arsenic 0.00

MLE 75(36) 2.13 241 1.61-2.66
ROS 75(36) 2.15 2.33 1.64-2.65
chromium 0.00
MLE 336(43) 2.79 212 257-3.02
ROS 336(43) 474 13.17 3.41-6.05
nickel 0.10
MLE 335(76) 4.16 5.22 3.60—4.73
ROS 335(76) 574 13.87 4.35-7.13
lead 0.00
MLE 335(9) 550 12.40 4.41-6.59
ROS 335(9) 7.32 23.48 4.85-9.79

mium, nickel, and lead. The data are from the California
Department of Transportation (Caltrans) Stormwater Man-
agement Program related to the highway runoff character-
ization monitoring (1997—1999) under the National Pollution
Discharge Elimination System. Table 3 gives the particulars
for sample sizes that ranged from n = 75 to n = 346 and
censoring levels varying from 2 to 76%. To look at the
distributions of concentrations, we plotted the log likelihood
eq 7 as a function of the power 1 in the transformation eq
1 and obtained again 4 = .10 for copper and nickel and 4 =
0 for all other sets, implying that the logarithmic transfor-
mation would be the best positive power. Figure 5 shows the
plot for copper, and it is clear that the log likelihood rises
montonically to a maximum at .1, which is close to zero.

Figure 6 shows the histograms for the log-transformed
metal concentrations, and we note that the distributions
appear to be roughly normal when we account for the data
missing because of being below the detection limit. Including
these data would give a huge component at the lower end
of some of the distributions. The copper distribution is based
on a relatively large sample (346) with a small amount of
censoring (2%) and seems to be close to normally distributed.
The distributions of aluminum, arsenic, and nickel are less
convincing. We also note the possible presence of outliers
in all of these data sets.
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FIGURE 5. Log likelihood as a function of the Box-Cox power
parameter 4 for copper data.
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FIGURE 6. Histograms for copper, aluminum, arsenic, chromium,
nickel, and lead data (see Table 3).

Table 3 shows the estimated mean concentrations for the
six metals. We note that there is rough agreement of the MLE
and ROS estimators except for the aluminum concentration
data. The aluminum data has a possible outlier with a
concentration of 2500 as compared to the next highest
measured concentrations of 540 and 570. The MLE method
yields 118.26(30.15) for the mean with the observation
included and 89.54(18.38) with the observation excluded,
whereas the ROS estimator gave comparable values of 152.87-
(61.81) and 94.65(20.91). It is clear in this case that deleting
the outlier produced more compatible estimators for the
mean for the two procedures.
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Discussion

This paper has investigated the estimation of mean and
variance parameters for severely censored small samples of
non-normal water quality data. The effectiveness of several
procedures in the literature based on exact maximum
likelihood estimation (MLE) for censored non-normal data
and a nonparametric procedure that performs a linear
regression on order statistics (ROS) were tested under both
simulated conditions and with real data involving measured
metal concentrations. The jackknife, also suggested by Singh
etal. (20), is developed as a tool for estimating the variances
and reducing the bias of both estimators.

We conclude that neither method is consistently better,
as measured by bias and the overall coverage properties of
the 95 nominal confidence intervals. For log-normal popula-
tions, our simulations indicate that the exact maximum
likelihood methods are biased for small severely censored
samples but that the bias can be eliminated by the jackknife.
Bias corrections applied in the past water quality literature
were actually found to increase the bias in simulation
experiments. For log-normal data, the ROS estimators were
essentially unbiased for all test configurations and had slightly
smaller standard errors, even when no transformation was
applied. For gamma distributed populations and a square
root transformation, both methods were biased, with the
maximum likelihood estimator performing slightly better.
Applying the ROS estimator without transforming the data
for the gamma distribution gave highly biased estimators
and large variances; the ROS estimator is not robust against
the distributional departure in this case.

In the analysis of real water quality concentrations, it is
noted that the MLE and ROS methods will give similar results
for moderately skewed data but may produce quite different
results for highly skewed data. The 95% intervals obtained
from the MLE were much smaller than those obtained from
ROS when the distributions were highly skewed. This was
probably due to the linear model being a poor fit for the
transformed order statistics.

In closing, it should be noted that the recommended
procedure that is implicit from the conclusions of the paper
is rather difficult to put into practice in an operating
environment. While the recommended methodologies, based
on either maximum likelihood or regression on order
statistics, are simple to apply, the choice will depend on the
particular configurations of censoring, sample size, and non-
normality encountered in a particular database. We recom-
mend grouping data into similar subsets and then applying
the same Box-Cox transformation to all members, restricted
to square root or logarithm and based on searching the log-
likelihood over all samples in the subgroup. The choice
between MLE and ROS depends somewhat on the kind of
data encountered. MLE will be biased and ROS will not be
biased for log-normal data, but the MLE bias will be reduced
by the jackknife ROS will be robust in the log-normal case
but may be severely biased in other contexts. Shumway and
Azari (25) give software written in MATLAB that can perform
all computations mentioned in this report, and subsequent
versions are being developed under contract that will be menu
driven and easy to apply.
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Appendix

We summarize for completeness some of the details for the
equations given in the text. We use repeatedly in the main
text the expressions for the standard normal density

exp{ —7%/2}
#(2) = (12)
V2
and the normal cumulative distribution function
X
D(x) = f _¢(@)dz (13)

along with its inverse ®(P),defined as the solution of the
equation P = ®(x).

For the censored case, it is easy to show that the
conditional expectation of the random variable y, given that
y < U, the lower detection threshold, is given by

E(yly < U)=p, — oR (14)

where R is the ratio

_ 92
=% 7 (15)
and
_U-wu
z=— ! (16)

isthe current standardized residual. The conditional variance
becomes

var(y| y < U) = 6,%(1 — ZR) 17)

The conditional means and variances are important
components of the simple algorithm described in the text
for computing the maximum likelihood estimators, i.e., the
estimators that maximize the likelihood function given in
the text.

The covariance matrix of the maximum likelihood esti-
mators is given in ref 10 as the inverse of the negative of the
information matrix, I, say cov = (— I)". The elements of the
2x2 matrix | are the second partial derivatives with respect
to uy and 6,2 of the log likelihood function eq 7. The entries
in | are functions only of Z;, R, 4y and ¢,? and are given in
ref 10. To find an approximate large-sample variance of the
means, ux in the original scale the above authors use the
delta method and eq 10.
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